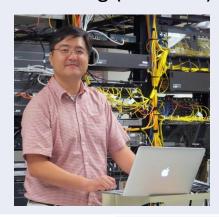


What is FABRIC?

Ilya Baldin RENCI/UNC Chapel Hill ibaldin@renci.org

2019 NSF Campus Cyberinfrastructure and Cybersecurity Innovation for Cyberinfrastructure PI Workshop



FABRIC Leadership Team

Ilya Baldin (RENCI)

KC Wang (Clemson)

Anita Nikolich (IIT)

Tom Lehman (Virnao)

Inder Monga (ESnet)

Paul Ruth (RENCI)

Jim Griffioen (UKY)

Zongming Fei (UKY)

Why FABRIC?

- The mantra of the last 20 years 'Internet is showing its age.'
 - Applications designed around discrete points in the solution space
 - Inability to program the core of the network
- What changed?
 - Cheap compute/storage that can be put *directly in* the network
 - Multiple established methods of programmability (OpenFlow, P4, eBPF, DPDK, BGP flowspec)
 - Advances in Machine Learning/Al
 - Emergence of 5G, IoT, various flavors of cloud technologies
- Opportunity for the community to push the boundaries of distributed, stateful, 'everywhere' programmable infrastructure
 - More control or dataplane state, or some combination? Multiple architectures (co)exist in this space.
 - Network as a big-data instrument? Autonomous network control?
 - New protocols and applications that program the network?
 - Security as an integral component?

FABRIC for everyone

FABRIC Enables New Internet and Science Applications

- Stateful network architectures, distributed applications that directly program the network

FABRIC Advances Cybersecurity

- At-scale realistic research facilitated by peering with production networks

FABRIC Integrates HPC, Wireless, and IoT

- A diverse environment connecting PAWR testbeds, NSF Clouds, HPC centers and instruments

FABRIC Integrates Machine Learning & Artificial Intelligence

- Support for in-network GPU-accelerated data analysis and control

FABRIC helps train the next generation of computer science researchers

FABRIC Core

FABRIC Edge

Georgia Tech

What is a FABRIC node?

- Core and edge nodes have compute, storage and programmable networking capabilities
 - Network programming at the level of OpenFlow, P4, eBPF, DPDK
 - GPUs to support ML applications
 - Ability to interpose compute, memory and storage into the path of fast packet flows
 - 25Gbps, 100Gbps, Nx100Gbps
 - Experimenters access hardware directly (network cards, GPUs, FPGA cards)
- The key is node placement
 - 13 core nodes located in telco locations at the intersection of multiple high-capacity dedicated optical links. Provide sliceable, programmable switching, hierarchical storage and in-network compute
 - 16 initial edge nodes (also known as 'hanks') located on campuses, in lab datacenters to provide base load, serve as gateways for facilities to connect to FABRIC

What FABRIC IS:

- FABRIC is an 'everywhere-programmable' network combining core and edge components that also link to many outside facilities.
- FABRIC is a multi-user facility with support for concurrent experiments of differing scales facilitated through federated authn/authz system with allocation controls.
- FABRIC is a place to experiment on new Internet architectures, protocols and distributed applications using a mix of resources from FABRIC, its facility partners and connected campuses, and opt-in users.
- FABRIC is extensible it will continue to connect new facilities like cloud, networking, other testbeds, computing facilities and scientific instruments. BYOE is also an option.

What FABRIC is NOT:

- FABRIC is not an isolated testbed it will peer at Layer 2 and Layer 3 with a variety of networks, allowing experiment slices to connect to a wide variety of external resources
- FABRIC is not a place for long-term production workloads - it is intended for CI experiments shortor long-lived.
- FABRIC is not a place for real real-world protected (PII or other) data – you can develop such new applications on FABRIC, but the infrastructure cannot support regulated data.
- FABRIC is not a fast new pipe for data between its connected facilities – ESnet, Internet2, and the regional networks provide production capacity, FABRIC provides a place to experiment with new approaches.

Science Design Drivers and Applications

- 4 'Science Design Driver' teams
 - FABRIC-ready experiment use-cases and applications
 - Help formulate design requirements
 - Help validate and commission the facility
 - Leave lasting experimental artifacts software, experiment profiles, case studies
- Focusing on security, IoT, ML in the network, NDN, advanced transport protocols

Construction Timeline

Year 1

- Planning
- Prototyping
- Software development
- Community building

Year 2

- Begin phase 1 deployment
- Testing, commissioning
- Design driver on-boarding

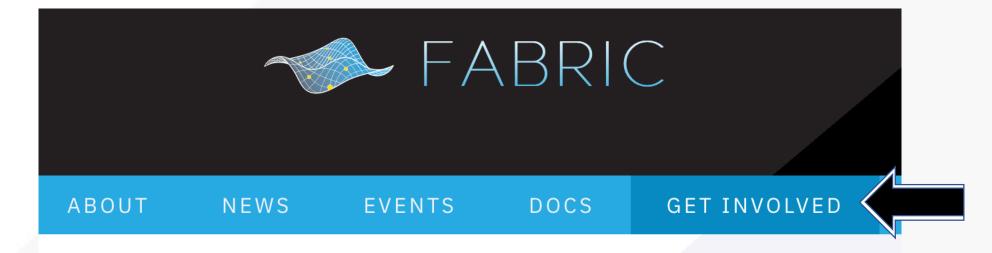
Year 3

- Complete Phase 1
- Design driver experiments and early users
- Begin Phase 2 deployment

Year 4

- Complete Phase 2 deployment
- Prepare for operations

FABRIC Community

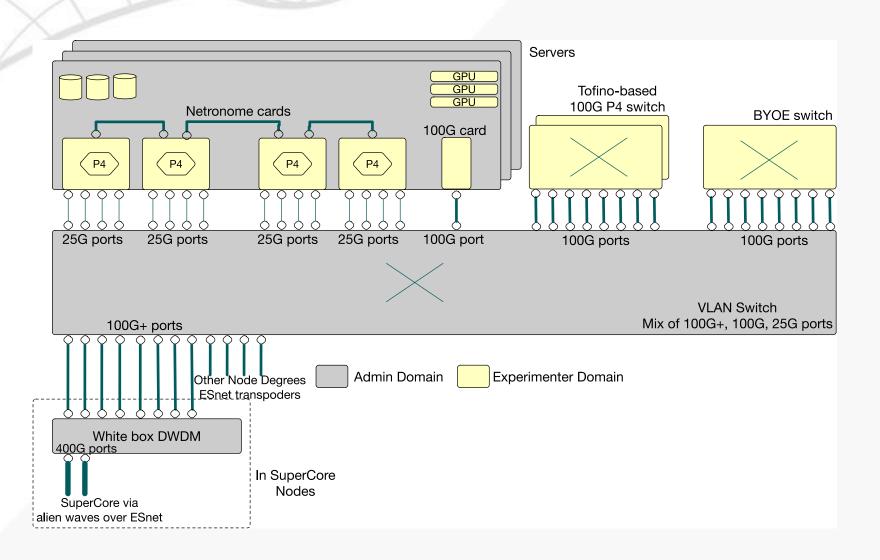

- We are looking to build a vibrant community of stakeholders:
 - Experimenters interested in using FABRIC
 - Facility partners
 - Regional and national network providers
- We will be organizing community event workshops (first to be held in Spring of 2020) to share the vision, progress and collect feedback

How do I get involved in FABRIC?

- Learn more information about it
- Discuss connecting my network or facility to it
- Volunteer contributing a 'hank' (FABRIC node) on my campus
- Discuss using it for my research

https://whatisfabric.net

Thank you!


This work is funded by NSF grant CNS-1935966

Backup Slides

Proposed FABRIC node ('hank')

